How Biased Is Your Model? Concentration Inequalities, Information and Model Bias
نویسندگان
چکیده
منابع مشابه
How biased is your model? Concentration Inequalities, Information and Model Bias
We derive tight and computable bounds on the bias of statistical estimators, or more generally of quantities of interest, when evaluated on a baseline model P rather than on the typically unknown true model Q. Our proposed method combines the scalable information inequality derived by P. Dupuis, K.Chowdhary, the authors and their collaborators together with classical concentration inequalities ...
متن کاملHow good is your model? Comparison with Observations
Having created a synthetic population of exoplanets, we would like to evaluate whether our model is a reasonable representation of reality. In the followingwewill use some simple tools to compare our model against exoplanet observations. While the exercises considered here will not produce publishable results, parts of the code may be directly useful for your future work (e.g. the data archive ...
متن کاملteacher educator evaluation model
اگرکیفیت معلم کلاس برای بهبودیادگیری دانش آموزحیاتی است،پس کیفیت اساتیددانشجو-معلمان، یابه عبارتی معلمین معلمان نیزبرای پیشرفت آموزش بسیارمهم واساسی است.ناگفته پیداست که یک سیستم مناسب آموزش معلمان ،معلمین با کیفیتی را تربیت خواهدکرد.که این کار منجربه داشتن مدارس خوب، ودرنتیجه نیروی کارماهرتروشهروندبهتربرای جامعه خواهدشد. اساتیددانشجو-معلمان نقشی بسیارمهم را در سیستم اموزش معلمان درسراسرجهان ای...
Study of Random Biased d-ary Tries Model
Tries are the most popular data structure on strings. We can construct d-ary tries by using strings over an alphabet leading to d-ary tries. Throughout the paper we assume that strings stored in trie are generated by an appropriate memory less source. In this paper, with a special combinatorial approach we extend their analysis for average profiles to d-ary tries. We use this combinatorial appr...
متن کاملNatural language processing: put your model where your mouth is
Molecular mechanisms are often described using “word models”—phrases intended to capture the interactions in a biological process. In their recent work, Sorger and colleagues (Gyori et al, 2017) provide a framework for converting word models into computational structures that can be simulated and compared to experimental data. By codifying word-based descriptions of molecular phenomena, scienti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2020
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2020.2977067